Multi-Objective Optimal Scheduling of Generalized Water Resources Based on an Inter-Basin Water Transfer Project

Author:

Xi Haichao1ORCID,Xie Yangyang123ORCID,Liu Saiyan1,Mao Qing1,Shen Teng1,Zhang Qin1

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225008, China

2. Engineering Research Center of High-Efficiency and Energy-Saving Large Axial Flow Pumping Station, Jiangsu Province, Yangzhou University, Yangzhou 225009, China

3. Modern Rural Water Resources Research Institute, Yangzhou University, Yangzhou 225008, China

Abstract

For inter-basin water transfer (IBWT) projects, the conflict between social, economic, and ecological objectives makes water allocation processes more complex. Specific to the problem of water resource conflict in IBWT projects, we established an optimal allocation model of generalized (conventional) water resources (G (C) model) to demonstrate the advantages of the G model. The improved multi-objective cuckoo optimization algorithm (IMOCS) was applied to search the Pareto frontiers of the two models under normal, dry, and extremely dry conditions. The optimal allocation scheme set of generalized (conventional) water resources (G (C) scheme set) consists of ten Pareto optimal solutions with the minimum water shortage selected from the Pareto optimal solutions of the G (C) model. The analytic hierarchy process (AHP) combined with criteria importance using the inter-criteria correlation (CRITIC) method was used to assign weights of evaluation indexes in the evaluation index system. The non-negative matrix method was employed to evaluate the G (C) scheme set to determine the best G (C) scheme for the Jiangsu section of the South-to-North Water Transfer (J-SNWT) Project. The results show that (1) the Pareto frontier of the G model is better than that of the C model, and (2) the best G scheme shows better index values compared to the best C scheme. The total water shortages are reduced by 254.2 million m3 and 827.9 million m3 under the dry condition, respectively, and the water losses are reduced by 145.1 million m3 and 141.1 million m3 under the extremely dry condition, respectively. These findings could not only provide J-SNWT Project managers with guidelines for water allocation under normal, dry, and extremely dry conditions but also demonstrate that the G model could achieve better water-allocation benefits than the C model for inter-basin water transfer projects.

Funder

Open Project Program of Engineering Research Center of High-efficiency and Energy-saving Large Axial Flow Pumping Station

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3