The Impact of Microelectrode Pattern on the Sensitivity of Tracing Environmental CO2 Deficiency in Cellular Metabolism by a New Design of Electrochemical Biosensor

Author:

Bourbour Faegheh1234,Abadijoo Hamed1234,Nazari Fatemeh1234,Ehtesabi Hamideh5,Abdolahad Mohammad1234ORCID

Affiliation:

1. Nano Electronic Center of Excellence, Nano Bio Electronic Devices Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran

2. Nano Electronic Center of Excellence, Thin Film and Nano Electronics Laboratory, School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran

3. Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran 1416634793, Iran

4. UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran

5. Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran

Abstract

Here, two different electrode patterns are described as cyclic voltammetry (CV) biosensors to detect the effect of a hypo CO2 condition (for 6 h) in ambient on cellular secretion. The cells were selected from breast cancer and endothelial standard lines. Changes in CV peaks of the secretions were recorded by the modified pattern whereby increasing the interactive surface with homogenous electric paths was considered by simulation before fabrication. The results of the simulation and experimental procedures showed a meaningful correlation between hypo CO2 samples and the occurrence of CV oxidative peaks at about 0.07 V and reductive peaks at approximately −0.22 V in the modified biosensor in all cell lines, while no apoptosis was found in any of the control and hypo CO2 samples. This observation could not be related to the lack of H+ (alkaline pH induction) in the media solution as such peaks were not observed in the pure cell culture medium but had been maintained in the hypo CO2 ambient. This approach could be used as a cell-free sensor to monitor ambient shocks. This may not induce apoptosis but may be vital in the proliferation and protein expression of the cells, such as the hypo CO2 ambient. The sensor is not disposable in use and showed repeatable responses after rinsing.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3