Development and Evaluation of a Flexible PVDF-Based Balloon Sensor for Detecting Mechanical Forces at Key Esophageal Nodes in Esophageal Motility Disorders

Author:

Ran Peng12,Li Minchuan12,Zhang Kunlin1,Sun Daming12,Lai Yingbing1,Liu Wei1,Zhong Ying1,Li Zhangyong23ORCID

Affiliation:

1. School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chongqing Engineering Research Center of Medical Electronics and Information Technology, Chongqing 400065, China

3. School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

Prevailing methods for esophageal motility assessments, such as perfusion manometry and probe-based function imaging, frequently overlook the intricate stress fields acting on the liquid-filled balloons at the forefront of the probing device within the esophageal lumen. To bridge this knowledge gap, we innovatively devised an infusible flexible balloon catheter, equipped with a quartet of PVDF piezoelectric sensors. This design, working in concert with a bespoke local key-node analytical algorithm and a sensor array state analysis model, seeks to shed new light on the dynamic mechanical characteristics at pivotal esophageal locales. To further this endeavor, we pioneered a singular closed balloon system and a complementary signal acquisition and processing system that employs a homogeneously distributed PVDF piezoelectric sensor array for the real-time monitoring of dynamic mechanical nuances in the esophageal segment. An advanced analytical model was established to scrutinize the coupled physical fields under varying degrees of balloon inflation, thereby facilitating a thorough dynamic stress examination of local esophageal nodes. Our rigorous execution of static, dynamic, and simulated swallowing experiments robustly substantiated the viability of our design, the logical coherence of our esophageal key-point stress analytical algorithm, and the potential clinical utility of a flexible esophageal key-node stress detection balloon probe outfitted with a PVDF array. This study offers a fresh lens through which esophageal motility testing can be viewed and improved upon.

Funder

Natural Science Foundation of Chongqing

General Fund of Chongqing Science and Technology Commission

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3