A Smartphone-Based sEMG Signal Analysis System for Human Action Recognition

Author:

Yu Shixin1,Zhan Hang1,Lian Xingwang1,Low Sze Shin2ORCID,Xu Yifei1,Li Jiangyong1,Zhang Yan1,Sun Xiaojun1,Liu Jingjing1ORCID

Affiliation:

1. College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China

2. Research Centre of Life Science and HealthCare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China

Abstract

In lower-limb rehabilitation, human action recognition (HAR) technology can be introduced to analyze the surface electromyography (sEMG) signal generated by movements, which can provide an objective and accurate evaluation of the patient’s action. To balance the long cycle required for rehabilitation and the inconvenient factors brought by wearing sEMG devices, a portable sEMG signal acquisition device was developed that can be used under daily scenarios. Additionally, a mobile application was developed to meet the demand for real-time monitoring and analysis of sEMG signals. This application can monitor data in real time and has functions such as plotting, filtering, storage, and action capture and recognition. To build the dataset required for the recognition model, six lower-limb motions were developed for rehabilitation (kick, toe off, heel off, toe off and heel up, step back and kick, and full gait). The sEMG segment and action label were combined for training a convolutional neural network (CNN) to achieve high-precision recognition performance for human lower-limb actions (with a maximum accuracy of 97.96% and recognition accuracy for all actions reaching over 97%). The results show that the smartphone-based sEMG analysis system proposed in this paper can provide reliable information for the clinical evaluation of lower-limb rehabilitation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3