Indoor Localization Using Uncooperative Wi-Fi Access Points

Author:

Horn Berthold K. P.

Abstract

Indoor localization using fine time measurement (FTM) round-trip time (RTT) with respect to cooperating Wi-Fi access points (APs) has been shown to work well and provide 1–2 m accuracy in both 2D and 3D applications. This approach depends on APs implementing the IEEE 802.11-2016 (also known as IEEE 802.11mc) Wi-Fi standard (“two-sided” RTT). Unfortunately, the penetration of this Wi-Fi protocol has been slower than anticipated, perhaps because APs tend not to be upgraded as often as other kinds of electronics, in particular in large institutions—where they would be most useful. Recently, Google released Android 12, which also supports an alternative “one-sided” RTT method that will work with legacy APs as well. This method cannot subtract out the “turn-around” time of the signal, and so, produces distance estimates that have much larger offsets than those seen with two-sided RTT—and the results are somewhat less accurate. At the same time, this method makes possible distance measurements for many APs that previously could not be used. This increased accessibility can compensate for the decreased accuracy of individual measurements. We demonstrate here indoor localization using one-sided RTT with respect to legacy APs that do not support IEEE 802.11-2016. The accuracy achieved is 3–4 m in cluttered environments with few line-of-sight readings (and using only 20 MHz bandwidths). This is not as good as for two-sided RTT, where 1–2 m accuracy has been achieved (using 80 MHz bandwidths), but adequate for many applications A wider Wi-Fi channel bandwidth would increase the accuracy further. As before, Bayesian grid update is the preferred method for determining position and positional accuracy, but the observation model now is different from that for two-sided RTT. As with two-sided RTT, the probability of an RTT measurement below the true distance is very low, but, in the other direction, the range of measurements for a given distance can be much wider (up to well over twice the actual distance). We describe methods for formulating useful observation models. As with two-sided RTT, the offset or bias in distance measurements has to be subtracted from the reported measurements. One difference is that here, the offsets are large (typically in the 2400–2700 m range) because of the “turn-around time” of roughly 16 μs (i.e., about two orders of magnitude larger than the time of flight one is attempting to measure). We describe methods for estimating these offsets and for minimizing the effort required to do so when setting up an installation with many APs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. INDOOR LOCATION BASED ON IEEE 802.11 ROUND-TRIP TIME MEASUREMENTS WITH TWO-STEP NLOS MITIGATION

2. CHARACTERIZATION AND MITIGATION OF RANGE ESTIMATION ERRORS FOR AN RTT-BASED IEEE 802.11 INDOOR LOCATION SYSTEM

3. Accurate and Integrated Localization System for Indoor Environments Based on IEEE 802.11 Round-Trip Time Measurements

4. Next Generation Positioning—Beyond Indoor Navigation https://mentor.IEEE.org/802.11/dcn/14/11-14-1193-01-0wng-beyond-indoor-navigation.pptx

5. Pushing the Limits of Indoor Localization in Today’s Wi-Fi Networks https://discovery.ucl.ac.uk/id/eprint/1470731/11/Thesis_JieXiong2015.pdf

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3