Abstract
Slender steel footbridges suffer excessive human-induced vibrations due to their low damping nature and their frequency being located in the range of human-induced excitations. Tuned mass dampers (TMDs) are usually used to solve the serviceability problem of footbridges. A multiple TMD (MTMD) system, which consists of several TMDs with different frequencies, has a wide application in the vibration control of footbridges. An MTMD system with well-designed parameters will have a satisfactory effect for vibration control. This study firstly discusses the relationship between the acceleration dynamic amplification factor and important parameters of an MTMD system, i.e., the frequency bandwidth, TMD damping ratio, central frequency ratio, mass ratio and the number of TMDs. Then, the frequency bandwidth and damping ratio optimal formulas are proposed according to the parametric study. At last, an in-service slender footbridge is proposed as a case study. The footbridge is analyzed through a finite element model and an in situ test, and then, an MTMD system is designed based on the proposed optimal design formulas. The vibration control effect of the MTMD system is verified through a series of in situ comparison tests. Results show that under walking, running and jumping excitations with different frequency, the MTMD system always has an excellent vibration control effect. Under a crowd-induced excitation with the resonance frequency, the footbridge with an MTMD system can meet the acceleration limit requirement. It is also found that the analysis result agrees well with the in situ test.
Funder
Shanghai Association for Science and Technology
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献