Optimal Design and Application of a Multiple Tuned Mass Damper System for an In-Service Footbridge

Author:

Wang Chao,Shi Weixing

Abstract

Slender steel footbridges suffer excessive human-induced vibrations due to their low damping nature and their frequency being located in the range of human-induced excitations. Tuned mass dampers (TMDs) are usually used to solve the serviceability problem of footbridges. A multiple TMD (MTMD) system, which consists of several TMDs with different frequencies, has a wide application in the vibration control of footbridges. An MTMD system with well-designed parameters will have a satisfactory effect for vibration control. This study firstly discusses the relationship between the acceleration dynamic amplification factor and important parameters of an MTMD system, i.e., the frequency bandwidth, TMD damping ratio, central frequency ratio, mass ratio and the number of TMDs. Then, the frequency bandwidth and damping ratio optimal formulas are proposed according to the parametric study. At last, an in-service slender footbridge is proposed as a case study. The footbridge is analyzed through a finite element model and an in situ test, and then, an MTMD system is designed based on the proposed optimal design formulas. The vibration control effect of the MTMD system is verified through a series of in situ comparison tests. Results show that under walking, running and jumping excitations with different frequency, the MTMD system always has an excellent vibration control effect. Under a crowd-induced excitation with the resonance frequency, the footbridge with an MTMD system can meet the acceleration limit requirement. It is also found that the analysis result agrees well with the in situ test.

Funder

Shanghai Association for Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3