Climate Change Affects Forest Productivity in a Typical Climate Transition Region of China

Author:

Ding Yongxia,Liang Siqi,Peng Shouzhang

Abstract

As global climate change has a large effect on the structure and function of vegetation, it is very important to understand how forests in climate transition regions respond to climate change. The present study investigates the net primary productivity (NPP) of two planted forests (Robinia pseudoacacia and Pinus tabulaeformis) and one natural forest (Quercus wutaishanica) from 1951–2100 using the LPJ-GUESS model in the Shaanxi province of China, which is a typical transition region from humid to dry climates. We found that: (1) Future annual precipitation and mean temperature exhibited nonsignificant and significant increasing trend in the region, respectively, indicating a drier climate in future; (2) although precipitation would increase in the dry area and decrease in the humid area, the NPP of each species in the dry area would be lower than that of the humid area, possibly because increasing temperature and CO2 concentration could restrain forest growth in dry areas and promote forest growth in humid areas; (3) of the three species, P. tabulaeformis forest exhibited the highest average NPP and R. pseudoacacia forest exhibited the highest NPP trend in both dry and humid areas, indicating these planted species may be adaptable to future climate change. Our results provide novel insights into the potential response of forest productivity to a changing climate in the transition region from humid to dry climates.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3