A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation

Author:

Meng Xianhong,Zhang Min,Wen Jiahong,Du ShiqiangORCID,Xu Hui,Wang Luyang,Yang Yan

Abstract

With rapid urbanization, floods that occur are more frequently associated with non-riverine, urban flooding. Reliable and efficient simulation of rainstorm inundation in an urban environment is profound for risk analysis and sustainable development. Although sophisticated hydrodynamic models are now available to simulate the urban flooding processes with a high accuracy, the complexity and heavy computation requirement render these models difficult to apply. Moreover, a large number of input data describing the complex urban underlying surfaces is required to setup the models, which are typically unavailable in reality. In this paper, a simple and efficient urban rainstorm inundation simulation method, named URIS, was developed based on a geographic information system (GIS) with limited input data. The URIS method is a simplified distributed hydrological model, integrating three components of the soil conservation service (SCS) module, surface flow module, and drainage flow module. Cumulative rainfall-runoff, output from the SCS model, feeds the surface flow model, while the drainage flow module is an important waterlogging mitigation measure. The central urban area of Shanghai in China was selected as a study case to calibrate and verify the method. It was demonstrated that the URIS is capable of characterizing the spatiotemporal dynamic processes of urban inundation and drainage under a range of scenarios, such as different rainstorm patterns with varying return periods and different alterations of drainage diameters. URIS is therefore characterized with high efficiency, reasonable data input, and low hardware requirements and should be an alternative to hydrodynamic models. It is useful for urgent urban flood inundation estimation and is applicable for other cities in supporting emergency rescue and sustainable urban planning.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

the Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference67 articles.

1. Discussion on the urban flood and waterlogging and causes analysis in China;Zhang;Adv. Water Sci,2016

2. Impact assessment of urbanization on flood risk in the Yangtze River Delta

3. Five Feet High and Rising Cities and Flooding in the 21st Century;Jha,2011

4. Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China

5. Mike Urban https://www.mikepoweredbydhi.com/products/mike-urban

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3