Ground Deformation Analysis Using InSAR and Backpropagation Prediction with Influencing Factors in Erhai Region, China

Author:

Wang Yuyi,Guo YahuiORCID,Hu Shunqiang,Li Yong,Wang JingzheORCID,Liu Xuesong,Wang Le

Abstract

The long continuity of Interferometric Synthetic Aperture Radar (InSAR) can provide high space and resolution data for ground deformation investigations. The ground deformation in this paper appeared in the city’s development, although it is close to the Erhai region, which is different from a water-deficient city. Therefore, the analysis and prediction of ground deformation using a new method is required. In this study, Sentinel-1 Synthetic Aperture Radar (SAR) images from 2015 to 2018 were used to study the characteristics of ground deformation in the Erhai region using the Small Baseline Subset Interferometric SAR (SBAS-InSAR) technique. The results were cross-validated using ascending and descending direction images to ensure the accuracy. In addition, the results showed that there was little ground deformation in the northern part of the Erhai region, while there was obvious ground deformation in the southern part. Four influencing factors—including the building area, water level, cumulative precipitation, and cumulative temperature of the southern Erhai region—were used together to predict the cumulative ground deformation using back-propagation (BP). The R of all the involved data was 0.966, and the root mean square errors (RMSEs) between the simulated values using BP and the true measured values were 3.063, 1.003, and 1.119, respectively. The results showed that BP has great potential in predicting the change tendency of ground deformation with high precision. The main reason for ground deformation is the continuous increase of building area; the water level followed. The cumulative precipitation and cumulative temperature are the reasons for the seasonal ground deformation. Some countermeasures and suggestions are given to face the challenge of serious ground deformation.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3