A System Dynamics Model for CO2 Mitigation Strategies at a Container Seaport

Author:

Mamatok Yuliya,Huang Yingyi,Jin Chun,Cheng XingqunORCID

Abstract

With the rapid development of the container shipping industry, the mitigation of carbon dioxide (CO2) emissions from container seaport activities have become an urgent problem. Therefore, the purpose of this research is to investigate dynamic problems in mitigation strategies at a container seaport. As a result, a system dynamics model for CO2 mitigation strategies at a container seaport was established. Three methods were combined to construct the system dynamics model: the activity-based method to estimate CO2 emissions; the representation of a container seaport as a system with several sub-systems; the system dynamics modeling for strategic decision-making in CO2 mitigation strategies. The key model component was the amount of CO2 emissions produced by container seaport activities. The other components represented container seaport operations and the main spots of CO2 concentration at berth, yard, gates, and region areas. Several CO2 mitigation strategies were included in the model to be simulated. The real case of Qingdao Port in China was used to simulate the scenarios of the current situation with CO2 emission amounts and the increasing container throughput. The other scenarios demonstrate the effects from CO2 mitigation strategies, such as operating time optimization, spatial measures, equipment modernization, and modal shift. The obtained results enable container seaport executives to evaluate which mitigation scenario is more effective for every container seaport area. The system dynamics model serves as a useful decision-making mechanism providing flexibility and variability in strategic planning.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. Container transportation: Resilience and sustainability

2. The Influence of Seaport Operations on the Coastal City Environment

3. Carbon accounting: a systematic literature review

4. Carbon Footprinting for Ports. Guidance Document. Prepared by Carbon Footprint Working Group, LosAngeles http://wpci.iaphworldports.org/data/docs/carbon-footprinting/PV_DRAFT_WPCI_Carbon_Footprinting_Guidance_Doc-June-30-2010_scg.pdf

5. Inventory of Air Emissions. Starcrest Consulting Group, Los Angeles https://kentico.portoflosangeles.org/getmedia/644d6f4c-77f7-4eb0-b05b-df4c0fea1295/2016_Air_Emissions_Inventory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3