Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals

Author:

Hassan Amjed M.ORCID,Mahmoud Mohamed A.,Al-Majed Abdulaziz A.,Al-Shehri DhaferORCID,Al-Nakhli Ayman R.,Bataweel Mohammed A.

Abstract

Unconventional reservoirs have shown tremendous potential for energy supply for long-term applications. However, great challenges are associated with hydrocarbon production from these reservoirs. Recently, injection of thermochemical fluids has been introduced as a new environmentally friendly and cost-effective chemical for improving hydrocarbon production. This research aims to improve gas production from gas condensate reservoirs using environmentally friendly chemicals. Further, the impact of thermochemical treatment on changing the pore size distribution is studied. Several experiments were conducted, including chemical injection, routine core analysis, and nuclear magnetic resonance (NMR) measurements. The impact of thermochemical treatment in sustaining gas production from a tight gas reservoir was quantified. This study demonstrates that thermochemical treatment can create different types of fractures (single or multistaged fractures) based on the injection method. Thermochemical treatment can increase absolute permeability up to 500%, reduce capillary pressure by 57%, remove the accumulated liquids, and improve gas relative permeability by a factor of 1.2. The findings of this study can help to design a better thermochemical treatment for improving gas recovery. This study showed that thermochemical treatment is an effective method for sustaining gas production from tight gas reservoirs.

Funder

Saudi Aramco

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3