The Formation Mechanism and Model of the Surface Nanoscale Kirkendall Effect on Au Catalyst Island/GaAs Substrate by Thermal Vapor-Liquid-Solid Method with Two-Step Temperature Mode

Author:

DAO Khac An,Pham Hong TrangORCID,Nguyen Tien Thanh,Phan Anh Tuan

Abstract

The Surface Nanoscale Kirkendall Effect is an important part of the Kirkendall effect, and has special role in the formation of surface nano material configurations. It can also cause faults in interconnection contact systems, yet this kind of effect has not yet been identified and studied in detail. Based on the obtained experimental results, this paper proposes a formation mechanism and model of the mixed-surface nanoscale Kirkendall effect formed by the role of Au metal catalyst islands/strips on a GaAs surface using the thermal Vapor-Liquid-Solid method. The diffusion of Ga, As, O atoms and the absorption of O atoms from a low-vacuum ambient into Au droplets forming surface nanoscale Au/Ga/O clusters leaves behind vacancies and voids; this process results in the nanoscale Kirkendall effect. In addition, the outward diffusion of the surface nanoscale Au/Ga/O clusters leaving behind bare GaAs holes in place of the former Au island forms the surface Kirkendall effect. Consequently, the combination of the two mentioned effects forms a new kind of KE, the so-called Surface Nanoscale Kirkendall Effect. This effect is generated either partly or completely, depending on the technological conditions. Accompanying this effect, the different configurations of nanomaterials have grown in number. The outward diffusion of surface nanoscale Au/Ga/O clusters was caused by the concentration of surface cluster gradients, the weakening of chemical bonds due to the accumulation of vacancies, the porosity, and pit-etching beneath the Au island. The diffusivity of surface Au/Ga/O clusters is numerically estimated. Its values vary from 2 × 10−10 to 10−11 m2/s. Potential applications of the surface nanoscale Kirkendall effect, making use of its advantages, limitations and disadvantages, are also discussed and proposed.

Funder

National Foundation for Science and Technology Development

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3