Photoelectrocatalytic Hydrogen Production Using a TiO2/WO3 Bilayer Photocatalyst in the Presence of Ethanol as a Fuel

Author:

Adamopoulos Panagiotis Marios,Papagiannis Ioannis,Raptis Dimitrios,Lianos PanagiotisORCID

Abstract

Photoelectrocatalytic hydrogen production was studied by using a photoelectrochemical cell where the photoanode was made by depositing on FTO electrodes either a nanoparticulate WO3 film alone or a bilayer film made of nanoparticulate WO3 at the bottom covered with a nanoparticulate TiO2 film on the top. Both the electric current and the hydrogen produced by the photoelectrocatalysis cell substantially increased by adding the top titania layer. The presence of this layer did not affect the current-voltage characteristics of the cell (besides the increase of the current density). This was an indication that the flow of electrons in the combined semiconductor photoanode was through the WO3 layer. The increase of the current was mainly attributed to the passivation of the surface recombination sites on WO3 contributing to the limitation of charge recombination mechanisms. In addition, the top titania layer may have contributed to photon absorption by back scattering of light and thus by enhancement of light absorption by WO3. Relatively high charge densities were recorded, owing both to the improvement of the photoanode by the combined photocatalyst and to the presence of ethanol as the sacrificial agent (fuel), which affected the recorded current by “current doubling” phenomena. Hydrogen was produced under electric bias using a simple cathode electrode made of carbon paper carrying carbon black as the electrocatalyst. This electrode gave a Faradaic efficiency of 58% for hydrogen production.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3