Symmetry-Enhanced LSTM-Based Recurrent Neural Network for Oscillation Minimization of Overhead Crane Systems during Material Transportation

Author:

Cui Xu1,Chipusu Kavimbi2,Ashraf Muhammad Awais3ORCID,Riaz Mudassar4,Xiahou Jianbing15ORCID,Huang Jianlong5

Affiliation:

1. Xiamen University, Xiamen 361005, China

2. Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada

3. School of Information Engineering, Chang’an University, Xi’an 710064, China

4. School of Computer Science and Technology, Central South University, Changsha 410017, China

5. Faculty of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362046, China

Abstract

This paper introduces a novel methodology for mitigating undesired oscillations in overhead crane systems used in material handling operations in the industry by leveraging Long Short-Term Memory (LSTM)-based Recurrent Neural Networks (RNNs). Oscillations during material transportation, particularly at the end location, pose safety risks and prolong carrying times. The methodology involves collecting sensor data from an overhead crane system, preprocessing the data, training an LSTM-based RNN model that incorporates symmetrical features, and integrating the model into a control algorithm. The control algorithm utilizes swing angle predictions from the symmetry-enhanced LSTM-based RNN model to dynamically adjust crane motion in real time, minimizing oscillations. Symmetry in this framework refers to the balanced and consistent handling of oscillatory data, ensuring that the model can generalize better across different scenarios and load conditions. The LSTM-based RNN model accurately predicts swing angles, enabling proactive control actions to be taken. Experimental validation demonstrates the effectiveness of the proposed approach, achieving an accuracy of approximately 98.6% in swing angle prediction. This innovative approach holds promise for transforming material transportation processes in industrial settings, enhancing operational safety, and optimizing efficiency.

Funder

Science and Technology Program of Quanzhou

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3