A New Latin Hypercube Sampling with Maximum Diversity Factor for Reliability-Based Design Optimization of HLM

Author:

Phromphan Pakin1,Suvisuthikasame Jirachot1,Kaewmongkol Metas1,Chanpichitwanich Woravech1,Sleesongsom Suwin1ORCID

Affiliation:

1. Department of Aeronautical Engineering, International Academy of Aviation Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

This research paper presents a new Latin hypercube sampling method, aimed at enhancing its performance in quantifying uncertainty and reducing computation time. The new Latin hypercube sampling (LHS) method serves as a tool in reliability-based design optimization (RBDO). The quantification technique is termed LHSMDF (LHS with maximum diversity factor). The quantification techniques, such as Latin hypercube sampling (LHS), optimum Latin hypercube sampling (OLHS), and Latin hypercube sampling with maximum diversity factor (LHSMDF), are tested against mechanical components, including a circular shaft housing, a connecting rod, and a cantilever beam, to evaluate its comparative performance. Subsequently, the new method is employed as the basis of RBDO in the synthesis of a six-bar high-lift mechanism (HLM) example to enhance the reliability of the resulting mechanism compared to Monte Carlo simulation (MCS). The design problem of this mechanism is classified as a motion generation problem, incorporating angle and position of the flap as an objective function. The six-bar linkage is first adapted to be a high-lift mechanism (HLM), which is a symmetrical device of the aircraft. Furthermore, a deterministic design, without consideration of uncertainty, may lead to unacceptable performance during the manufacturing step due to link length tolerances. The techniques are combined with an efficient metaheuristic known as teaching–learning-based optimization with a diversity archive (ATLBO-DA) to identify a reliable HLM. Performance testing of the new LHSMDF reveals that it outperforms the original LHS and OLHS. The HLM problem test results demonstrate that achieving optimum HLM with high reliability necessitates precision without sacrificing accuracy in the manufacturing process. Moreover, it is suggested that the six-bar HLM could emerge as a viable option for developing a new high-lift device in aircraft mechanisms for the future.

Funder

King Mongkut’s Institute of Technology Ladkrabang and the National Research Council Thailand

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3