OPT-FRAC-CHN: Optimal Fractional Continuous Hopfield Network

Author:

El Moutaouakil Karim1ORCID,Bouhanch Zakaria1ORCID,Ahourag Abdellah1ORCID,Aberqi Ahmed2ORCID,Karite Touria3ORCID

Affiliation:

1. Laboratory of Engineering Sciences, Multidisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza 35000, Morocco

2. Laboratory of Mathematics Analysis and Applications (LAMA), National School of Applied Sciences, Sidi Mohammed Ben Abdellah University, Fez 30022, Morocco

3. Laboratory of Engineering Systems and Applications (LISA), National School of Applied Sciences, Sidi Mohammed Ben Abdellah University, Fez 30022, Morocco

Abstract

The continuous Hopfield network (CHN) is a common recurrent neural network. The CHN tool can be used to solve a number of ranking and optimization problems, where the equilibrium states of the ordinary differential equation (ODE) related to the CHN give the solution to any given problem. Because of the non-local characteristic of the “infinite memory” effect, fractional-order (FO) systems have been proved to describe more accurately the behavior of real dynamical systems, compared to the model’s ODE. In this paper, a fractional-order variant of a Hopfield neural network is introduced to solve a Quadratic Knap Sac Problem (QKSP), namely the fractional CHN (FRAC-CHN). Firstly, the system is integrated with the quadratic method for fractional-order equations whose trajectories have shown erratic paths and jumps to other basin attractions. To avoid these drawbacks, a new algorithm for obtaining an equilibrium point for a CHN is introduced in this paper, namely the optimal fractional CHN (OPT-FRAC-CHN). This is a variable time-step method that converges to a good local minima in just a few iterations. Compared with the non-variable time-stepping CHN method, the optimal time-stepping CHN method (OPT-CHN) and the FRAC-CHN method, the OPT-FRAC-CHN method, produce the best local minima for random CHN instances and for the optimal feeding problem.

Publisher

MDPI AG

Reference43 articles.

1. Zhou, Y., Pang, T., Liu, K., Mahoney, M.W., and Yang, Y. (2023). Temperature balancing, layer-wise weight analysis, and neural network training. arXiv.

2. Active oscillatory associative memory;Du;J. Chem. Phys.,2024

3. Enhancing the analog to digital converter using proteretic hopfield neural network;Abdulrahman;Neural Comput. Appl.,2024

4. Rbihou, S., Haddouch, K., and El moutaouakil, K. (2024). Optimizing hyperparameters in Hopfield neural networks using evolutionary search. OPSEARCH, 1–29.

5. A multi-step method to calculate the equilibrium point of the Continuous Hopfield Networks: Application to the max-stable problem;Ettaouil;Wseas Trans. Syst. Control,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3