A Reappraisal of Lagrangians with Non-Quadratic Velocity Dependence and Branched Hamiltonians

Author:

Bagchi Bijan1,Ghosh Aritra2ORCID,Znojil Miloslav345ORCID

Affiliation:

1. Department of Mathematics, Brainware University, Kolkata 700125, West Bengal, India

2. School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni 752050, Odisha, India

3. The Czech Academy of Sciences, Nuclear Physics Institute, Hlavní 130, 25068 Řež, Czech Republic

4. Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic

5. Institute of System Science, Durban University of Technology, Durban 4001, South Africa

Abstract

Time and again, non-conventional forms of Lagrangians with non-quadratic velocity dependence have received attention in the literature. For one thing, such Lagrangians have deep connections with several aspects of nonlinear dynamics including specifically the types of the Liénard class; for another, very often, the problem of their quantization opens up multiple branches of the corresponding Hamiltonians, ending up with the presence of singularities in the associated eigenfunctions. In this article, we furnish a brief review of the classical theory of such Lagrangians and the associated branched Hamiltonians, starting with the example of Liénard-type systems. We then take up other cases where the Lagrangians depend on velocity with powers greater than two while still having a tractable mathematical structure, while also describing the associated branched Hamiltonians for such systems. For various examples, we emphasize the emergence of the notion of momentum-dependent mass in the theory of branched Hamiltonians.

Funder

Brainware University

University of Hradec Kralove

Ministry of Education

Publisher

MDPI AG

Reference67 articles.

1. Branched Quantization;Shapere;Phys. Rev. Lett.,2012

2. Classical Time Crystals;Shapere;Phys. Rev. Lett.,2012

3. Quantum Time Crystals;Wilczek;Phys. Rev. Lett.,2012

4. Quantum mechanics for multivalued Hamiltonians;Henneaux;Phys. Rev. A,1987

5. Exploring branched Hamiltonians for a class of nonlinear systems;Bagchi;Mod. Phys. Lett. A,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3