Dynamic Analysis and Optimization of the Coupling System of Vibrating Flip-Flow Screen and Material Group

Author:

Gong Sanpeng1,Wang Chenhao1,Guo Jialiang1,Qiao Ziqi1,Zhao Guofeng1,Fan Junkai1ORCID,Xu Ningning1ORCID,Wang Xinwen2

Affiliation:

1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China

2. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Vibrating flip-flow screens (VFFSs) provide an effective solution for deeply screening moist and fine-grained minerals, and an accurate dynamic model of VFFSs is critical for its dynamic analysis and optimization, thereby improving the vibration stability and symmetry of VFFSs. In this paper, uniaxial tension, uniaxial compression, plane tension, and shear stress relaxation experiments were conducted on screen panel samples to illustrate that the third-order Ogden model and the generalized Maxwell model can accurately describe the hyperelasticity and viscoelasticity of screen panels. Then, the coupling method of finite element and discrete element was adopted to establish the simulation model of the screen panel and material group coupling system, and the dynamics of the coupling system under different loading conditions were explored. Finally, the dynamic model of the coupling system of VFFSs mass, screen panel, and material group was proposed, and the non-dominated sorting genetic algorithm II was applied to optimize the system’s dynamic response. The results reveal that the use of optimized shear springs can reduce the relative amplitude change rate of the main and floating screen frame by 44.30% while maintaining the periodic motion of the VFFSs under operation conditions, greatly enhancing the stability of the VFFSs system.

Funder

National Natural Science Foundation of China

Key Scientific and Technological Project of Henan Province

Doctoral Fund of Henan Polytechnic University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3