In-Situ Synthesis of Layered Double Hydroxide/Silica Aerogel Composite and Its Thermal Safety Characteristics

Author:

Sun Mengtian,Wang Yang,Wang Xiaowu,Liu Qiong,Li MingORCID,Shulga Yury M.ORCID,Li ZhiORCID

Abstract

To adjust the thermal safety of hydrophobic silica aerogel, layered double hydroxide (LDH)/silica aerogel (SA) composites were prepared by an in-situ sol-gel process at ambient pressure. This study found the physical combination of SA and MgAl-LDH based on the FTIR spectra and phase composition of LDH/SA. The N2 sorption analysis confirms that the introduction of MgAl-LDH does not change the mesoporous attribution of LDH/SA significantly. With the increase in MgAl-LDH addictive content, the low density (0.12–0.13 g/cm3), low thermal conductivity (24.28–26.38 mW/m/K), and large specific surface area (730.7–903.7 m2g) of LDH/SA are still maintained, which can satisfy the requirements of thermal insulation. The TG-DSC analysis demonstrates that the endothermic effects and metal oxides formed during the MgAl-LDH decomposition are beneficial to the improvement of the thermal stability of LDH/SA composites. In addition, it was found that the gross calorific values of LDH/SA composites decrease with an increase in MgAl-LDH addictive content, all of which are lower than that of the pure SA. The research outcomes indicate that the thermal safety of LDH/SA composites is enhanced significantly by doping MgAl-LDH without impairing too many of the excellent properties, which benefits their expansion in the thermal insulation field.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3