Formation-Damage Mechanism and Gel-Breaker-Free Drill-In Fluid for Carbonate Reservoir

Author:

Fang Qingchao,Zhao Xin,Sun Hao,Wang Zhiwei,Qiu Zhengsong,Shan Kai,Ren XiaoxiaORCID

Abstract

Abundant oil and gas reserves have been proved in carbonates, but formation damage affects their production. In this study, the characteristics and formation-damage mechanism of the carbonate reservoir formation of the MS Oilfield in the Middle East were analyzed—utilizing X-ray diffraction, a scanning electron microscope, slice identification, and mercury intrusion—and technical measures for preventing formation damage were proposed. An ‘improved ideal filling for temporary plugging’ theory was introduced, to design the particle size distribution of acid-soluble temporary plugging agents; a water-based drill-in fluid, which did not require gel-breaker treatment, was formed, and the properties of the drill-in fluid were tested. The results showed that the overall porosity and permeability of the carbonate reservoir formation were low, and that there was a potential for water-blocking damage. There were micro-fractures with a width of 80–120 μm in the formation, which provided channels for drill-in fluid invasion. The average content of dolomite is 90.25%, and precipitation may occur under alkaline conditions. The polymeric drill-in fluid had good rheological and filtration properties, and the removal rate of the filter cake reached 78.1% in the chelating acid completion fluid without using gel breakers. In the permeability plugging test, the drill-in fluid formed a tight plugging zone on the surface of the ceramic disc with a pore size up to 120 μm, and mitigated the fluid loss. In core flow tests, the drill-in fluid also effectively plugged the formation core samples by forming a thin plugging layer, which could be removed by the chelating acid completion fluid, indicated by return permeability higher than 80%. The results indicated that the drill-in fluid could mitigate formation damage without the treatment of gel breakers, thus improving the operating efficiency and safety.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3