An Attempt to Relate Oleogel Properties to Wax Ester Chemical Structures

Author:

Brykczynski HenrietteORCID,Hetzer BirgitORCID,Flöter Eckhard

Abstract

Wax esters are considered to have a dominant contribution in the gelling properties of wax-based oleogels. To understand their gelling behavior, oleogels of seven different wax esters (total carbon number from 30 to 46; c = 10% [m/m]) in medium-chain triglycerides oil were characterized. Scanning electron microscopy revealed that wax esters crystallize in rhombic platelets with a thickness of 80 to 115 monomolecular layers. Bright field microscopy showed that the regularity and face length of the crystals increased with the total carbon number and molecular symmetry of the respective wax ester. Oscillatory rheology was used to characterize the gel rigidity (Gmax*). Here, wax ester oleogels with smaller total carbon numbers yielded higher Gmax* values than those of wax esters with higher total carbon numbers. The gel rigidity (Gmax*) inversely correlated with the crystal face length. Smaller and optically less well-defined platelets promoted higher gel rigidities. In the case of the microstructure of a specific oleogel composition being manipulated by a variation in the cooling rates (0.8; 5; 10 K/min), this relationship persisted. The information compiled in this manuscript further elucidates the crystallization behavior of wax esters in oleogels. This contributes to the understanding of the composition–structure–functionality relationship of wax-based oleogels supporting future food applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference44 articles.

1. Oleogels—Their Applicability and Methods of Characterization

2. Structure and Physical Properties of Plant Wax Crystal Networks and Their Relationship to Oil Binding Capacity

3. Commission Regulation (EU);No 231/2012,2012

4. Title 21: Foods and Drugs CFR: § 172.890,2012

5. Structure-function of wax-based oleogels prepared in rice bran oil;Doan;Ph.D. Thesis,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3