Mechanical Characterization of Synthetic Gels for Creation of Surrogate Hands Subjected to Low-Velocity Impacts

Author:

Sosa Eduardo M.,Moure Marta M.

Abstract

The development of human body simulators that can be used as surrogates for testing protective devices and measures requires selecting synthetic materials with mechanical properties closely representative of the human tissues under consideration. For impact tests, gelatinous materials are often used to represent the soft tissues as a whole without distinguishing layers such as skin, fat, or muscles. This research focuses on the mechanical characterization of medical-grade synthetic gels that can be implemented to represent the soft tissues of the hand. Six grades of commercially available gels are selected for quasi-static hardness and firmness tests as well as for controlled low-velocity impact tests, which are not routinely conducted by gel manufacturers and require additional considerations such as energy level and specimen sizes relevant to the specific application. Specimens subject to impacts represent the hand thicknesses at the fingers, knuckles, and mid-metacarpal regions. Two impact test configurations are considered: one with the gel specimens including a solid insert representing a bone and one without this insert. The impact behavior of the candidate gels is evaluated by the coefficient of restitution, the energy loss percentage, and the peak reaction force at the time of impact. The resulting values are compared with similar indicators reported for experiments with cadaveric hands. Relatively softer gels, characterized by Shore OOO hardness in the range of 32.6 ± 0.9 to 34.4 ± 2.0, closely matched the impact behavior of cadaveric specimens. These results show that softer gels would be the most suitable gels to represent soft tissues in the creation of surrogate hands that can be used for extensive impact testing, thus, minimizing the need for cadaveric specimens.

Funder

West Virginia University

Madrid Government V PRICIT

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3