Abstract
Glioma cells produce an increased amount of collagen compared with normal astrocytes. The increasing amount of collagen in the extracellular matrix (ECM) modulates the matrix structure and the mechanical properties of the microenvironment, thereby regulating tumor cell invasion. Although the regulation of tumor cell invasion mainly relies on cell–ECM interaction, the electrotaxis of tumor cells has attracted great research interest. The growth of glioma cells in a three-dimensional (3D) collagen hydrogel creates a relevant tumor physiological condition for the study of tumor cell invasion. In this study, we tested the migration of human glioma cells, fetal astrocytes, and adult astrocytes in a 3D collagen matrix with different collagen concentrations. We report that all three types of cells demonstrated higher motility in a low concentration of collagen hydrogel (3 mg/mL and 5 mg/mL) than in a high concentration of collagen hydrogel (10 mg/mL). We further show that human glioma cells grown in collagen hydrogels responded to direct current electric field (dcEF) stimulation and migrated to the anodal pole. The tumor cells altered their morphology in the gels to adapt to the anodal migration. The directedness of anodal migration shows a field strength-dependent response. EF stimulation increased the migration speed of tumor cells. This study implicates the potential role of an dcEF in glioma invasion and as a target of treatment.
Funder
National Institutes of Health
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献