Trihedral Lattice Towers Optimization with a Limitation on the Resonant Vortex Excitation Occurrence

Author:

Chepurnenko AntonORCID,Akhtyamova Leisan,Ivashchenko Irina,Akopyan Vladimir

Abstract

Trihedral lattice towers are widely used as transmission line supports, wind turbine supports, cell towers, and floodlight towers. The aim of this work is to develop a technique for optimizing trihedral lattice supports to reduce their weight, taking into account the limitation on resonant vortex excitation. At the same time, restrictions are also introduced on the maximum stress, as well as the ultimate slenderness of the elements. Thus, with a minimum weight, the tower must meet all the requirements of the design codes. A lattice tower used as a floodlight mast is considered. The tower consists of two sections, the upper of which is of constant width, and the width of the lower section varies according to a linear law. The elements of the tower are made from pipes with an annular cross section. The sections’ widths and heights, the dimensions of elements’ cross-sections, and the number of panels are the variable parameters. The solution of the nonlinear optimization problem is implemented in MATLAB software. Internal forces in the tower and natural frequencies are calculated by the finite element method. The tower is subjected to the action of ice and wind loads, dead weight and the weight of the equipment. The wind load is considered as the sum of the average and pulsation components. To solve the problem of nonlinear optimization, the surrogate optimization method and the genetic algorithm are used. One of the serially used designs was chosen as the initial approximation. The design obtained as a result of optimization compared to the initial approximation has a mass more than two times less and at the same time satisfies all design requirements.

Funder

Don State Technical University

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3