Active Vibration Control of Timoshenko Sigmoid Functionally Graded Porous Composite Beam with Distributed Piezoelectric Sensor/Actuator in a Thermal Environment

Author:

El Harti KhalidORCID,Saadani Rachid,Rahmoune Miloud

Abstract

This work presents the study of the dynamics and active control of a cantilever sigmoid FGM beam with porosities in a thermal environment. During this study, we considered the Timoshenko beam’s theory combined with the finite element method (FEM). This work also presents a comparative study with an experimental study for the vibration of a functionally graded piezoelectric beam (FGPM) to validate the numerical model. Linear quadratic Gaussian (LQG) optimal control with a Kalman filter was used for the vibration control using piezoelectric sensors and actuators as symmetrical layers to eliminate membrane effects. The controlled and uncontrolled responses are presented, considering the influence of thermal effect, the porosity of the FGM material, and the location of the sensor pair on the smart structure. The results indicate that the porosity effect of the FGM material, as well as the application of the thermal effect, involves an increase in vibration frequencies, in contrast to the increase in the power law index. The study also shows that the thermal and porosity effects result in an increase in vibration amplitudes.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3