Identifying the Factors Impacting Bridge Deterioration in the Gulf Cooperation Council

Author:

Al-Rashed Rawan1,Abdelfatah Akmal1ORCID,Yehia Sherif1ORCID

Affiliation:

1. Civil Engineering Department, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Abstract

The deterioration module (DM) is one of the four major modules necessary for any bridge management system (BMS). Environmental conditions, structural systems, bridge configuration, geographic location, and traffic data are some of the major factors that affect the development of deterioration modules. This emphasizes the need for the development of deterioration models that reflect the local conditions. In this article, some of the most important factors that could help in developing deterioration models in the Gulf Cooperation Council (GCC) were identified. The research was conducted in three phases; in the first phase, an extensive literature search was conducted to identify factors adopted in different deterioration models, and in phase two, the most relevant factors to the GCC environment were selected and these factors were further reduced based on input from local bridge experts. The result from the second phase is a list of factors identified by the experts. The identified list was utilized in phase three, which was focused on conducting a survey targeting bridge engineers to help identify the final selection and rank the factors according to their importance level. The results indicate that steel reinforcement protection, design load, chloride attack, type of defect, and age are the most important factors impacting bridge deterioration in the GCC. In addition, the time of rehabilitation; average daily truck traffic, ADTT; and average daily traffic, ADT, are the second most important factors. Factors with medium importance level are deck protection, services under the bridge, and inspection gap. The least important set of factors include temperature and wind load.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference126 articles.

1. Analytical Approach to the Development of a Bridge Management System;James;Transp. Res. Rec.,1991

2. Hart, M., and Schrock, S. (2016). Highway Bridge Maintenance Planning and Scheduling, Elsevier Inc.

3. Lee, J. (2007). A Methodology for Developing Bridge Condition Rating Models Based on Limited Inspection Records. [Ph.D. Thesis, Griffith University].

4. Optimal Network-Level Bridge Maintenance Planning Based on Minimum Expected Cost;Frangopol;Transp. Res. Rec. J. Transp. Res. Board,2000

5. Best practice of bridge system management;Edward;J. Manag. Eng.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI Approaches for Predictive Maintenance in Road Bridge Infrastructure;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3