A Unit-Load Approach for Reliability-Based Design Optimization of Linear Structures under Random Loads and Boundary Conditions

Author:

Haupin Robert James1,Hou Gene Jean-Win1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23454, USA

Abstract

The low order Taylor’s series expansion was employed in this study to estimate the reliability indices of the failure criteria for reliability-based design optimization of a linear static structure subjected to random loads and boundary conditions. By taking the advantage of the linear superposition principle, only a few analyses of the structure subjected to unit-loads are needed through the entire optimization process to produce acceptable results. Two structural examples are presented in this study to illustrate the effectiveness of the proposed approach for reliability-based design optimization: one deals with a truss structure subjected to random multiple point constraints, and the other conducts shape design optimization of a plane stress problem subjected to random point loads. Both examples were formulated and solved by the finite element method. The first example used the penalty method to reformulate the multiple point constraints as external loads, while the second example introduced an approach to propagate the uncertainty linearly from the nodal displacement vector to the nodal von Mises stress vector. The final designs obtained from the reliability-based design optimization were validated through Monte Carlo simulation. This validation process was completed with only four unit-load analyses for the first example and two for the second example.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3