Performance Assessment in a “Lane Departure” Scenario of Impending Collision for an ADAS Logic Based on Injury Risk Minimisation

Author:

Gulino Michelangelo-Santo1ORCID,Vangi Dario1,Damaziak Krzysztof2ORCID

Affiliation:

1. Department of Industrial Engineering of Florence, Università degli Studi di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy

2. Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, Gen. Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland

Abstract

The current prioritisation of road safety enhancement in the automotive sector is leading toward the near future implementation of Advanced Driver Assistance Systems (ADASs), aiming at the simultaneous intervention of braking and steering for impact avoidance in case of an impending collision. However, it is partially unclear how new technologies for controlling the steering will actually behave in the case of inevitable collision states; the need consequently emerges to propose and tune efficient ADAS strategies to handle the complexity of critical road scenarios. An adaptive intervention logic on braking and steering for highly automated vehicles is applied in the context of a “lane departure”, two-vehicle critical road scenario; the ADAS implementing the logic activates to minimise the injury risk for the ego vehicle’s occupants at each time step, adapting to the eventual scenario evolution consequent to actions by other road users. The performance of the adaptive logic is investigated by a software-in-the-loop approach, varying the mutual position of the involved vehicles at the beginning of the criticality and comparing the injury risk outcomes of the eventual impacts with those connected to the Autonomous Emergency Braking (AEB). The results highlight a twofold benefit from the adaptive logic application in terms of road safety: (1) it decreases the frequency of impacts compared to the AEB function; (2) in inevitable collision states, it decreases injury risk for the vehicles’ occupants down to 40% compared to the AEB. This latter condition is achieved thanks to the possibility of reaching highly eccentric impact conditions (low impact forces and occupants’ injury risk as a consequence). The obtained highlights expand the literature regarding the adaptive logic by considering a diverse critical road scenario and investigating how fine variations on the vehicles’ mutual position at the beginning of the criticality reflect on the injury outcomes for different types of intervention logic.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lane Detection System Based on Canny Method for Driving Assistance;2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3