A Novel Optimization Strategy of Bearing Geometry with a Length to Diameter Ratio of 1.25 under Severe Operating Conditions Using Taguchi Method

Author:

Jamali Hazim U.1ORCID,Mohammed M. N.2ORCID,Aljibori H. S. S.3,Jweeg Muhsin Jaber4,Abdullah Oday I.526ORCID

Affiliation:

1. Mechanical Engineering Department, College of Engineering, University of Kerbala, Karbala 56001, Iraq

2. Mechanical Engineering Department, College of Engineering, Gulf University, Sanad 26489, Bahrain

3. Al-Warith Center for Crowd Engineering and Management Research, University of Warith Al-Anbiyaa, Karbala 56001, Iraq

4. College of Technical Engineering, Al-Farahidi University, Baghdad 00965, Iraq

5. Department of Energy Engineering, College of Engineering, University of Baghdad, Baghdad 10071, Iraq

6. Department of Mechanics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan

Abstract

Robust and well-designed rotor-bearing systems ensure safe operation and a high level of reliability under severe operating conditions. A deviation in the shaft axis with respect to the bearing longitudinal axis represents one of the most unavoidable problems in bearing systems. This deviation results from installation errors, manufacturing errors, shaft deformation under heavy loads, bearing wear, and many other causes. Each of these deviation sources has its negative consequences on the designed characteristics of the system. This work deals with the geometrical design of a journal bearing using three forms of profiles (linear (n=1), quadratic n=2 and cubic (n=3) profiles) in order to enhance bearing performance despite the presence of the inevitable shaft deviation. In addition, a wide range of bearing profile parameters are considered in the analysis to optimize the bearing profile based on the use of the Taguchi method. A general form of shaft deviation is considered to account for both horizontal and vertical deviations. A numerical solution is obtained using the finite difference method. The results show that all three suggested forms of bearing profiles elevate the film thickness significantly and also reduce the friction coefficient, but with different effects on the maximum pressure values. The Taguchi method illustrates that the optimal geometrical design parameters are the quadratic profile and the modification of one-fifth of the bearing width from both sides at a height of just less than half the radial clearance (0.4 C) at the bearing edges. These values give the best combination of the considered main bearing characteristics: the minimum film thickness, coefficient of friction, and maximum pressure. The results show that the minimum film thickness is increased by 184%, the maximum pressure is reduced by 15.1% and the friction coefficient is decreased by 6.4% due to the use of the suggested design. The outcome of this work represents an important enhancement step for the rotor bearing performance to work safely with high reliability under severe shaft deviation levels. This can be implied at the design stage of the bearing, which requires prior knowledge about the operating conditions in order to have better estimation for the levels of shaft deviation.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3