Quantum Deep Learning for Fast Switching of Full-Bridge Power Converters

Author:

Gheisarnejad Meysam1,Khooban Mohammad-Hassan1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark

Abstract

With the qualitative development of DC microgrids, the usage of different loads with unique conditions and features is now possible in electric power grids. Due to the negative impedance features of some loads, which are called constant power loads (CPLs), the control of DC power converters faces huge challenges from a stability point of view. Despite the significant advances in semiconductors, there is no upgrade in the control of gate drivers to exploit all potential of power electronic systems. In this paper, quantum computations are incorporated into artificial intelligence (AI) to stabilize a full-bridge (FB) DC-DC boost converter feeding CPL. Aiming to improve the bus voltage stabilization of the FB DC-DC boost converter, a quantum deep reinforcement learning (QDRL) control methodology is developed. By defining a reward function according to the specification of the FB power converter, the desired performance and control objectives are fulfilled. The main task of QDRL is to adjust the control coefficients embedded in the feedback controller to suppress the negative impedance effect resulting from deploying the CPLs. By deploying the potential advantages of quantum fundamentals, the deep reinforcement learning improved by quantum specifications will not only enhance the performance of the DRL algorithm on conventional processes but also advance related research areas such as quantum computing and AI. Unlike the basic quantum theory, which requires real quantum hardware, QDRL can be executed on classic computers. To examine the feasibility of the QDRL scheme, hardware-in-the-loop (HiL) examinations are conducted using the OPAL-RT. The comparison of the proposed controller with the classic state-of-the-art methodologies reveals the superiority and feasibility of QDRL-based control schemes in both the transient and steady-state conditions to other schemes. Analysis using various performance criteria, including the integral absolute error (IAE), integral time absolute error (ITAE), mean absolute error (MAE), and root mean square error (RMSE), demonstrates the dynamic improvement of the proposed scheme over sliding mode control (approximately 50%) and proportional integral control (approximately 100%).

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3