Impeller Design and Performance Analysis of Aviation Fuel Pump Based on the Inverse Method

Author:

Ping Chenguang1,Yang Jinguang1ORCID,Ferlauto Michele2ORCID,Zhao Yang3

Affiliation:

1. School of Energy and Power, Dalian University of Technology, Dalian 116024, China

2. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy

3. Shenyang Blower Works Group Corporation, Shenyang 110869, China

Abstract

Centrifugal pumps have a wide range of applications in the aviation field. The present work focuses on the optimal design of aviation fuel pump impellers by means of an inverse method. The fuel pump impeller is designed here by solving an inverse problem, in which the impeller geometry is found by imposing a target blade loading. As the inverse procedure is inviscid, an iterative process based on RANS is then applied to finally converge to a fully viscous solution. Three representative loading distributions have been investigated, and the final performances are evaluated by RANS computations. Since flow variables, rather than the blade geometry, are imposed on the target flow field, it is found that the impellers designed by way of the inverse method have high efficiency under the conditions without cavitation; among them, the pump impeller with a higher loading at the hub maintains a high efficiency for a wide range of flow conditions and also has better anti-cavitation performances under low inlet pressure conditions. Moreover, cavitation resistance can be improved by adjusting the loading distribution near the blade leading edge using the inverse design tool.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3