FPGA-Based Hardware-in-the-Loop (HIL) Emulation of Power Electronics Circuit Using Device-Level Behavioral Modeling

Author:

Baghdadi Mohamed1ORCID,Elwarraki Elmostafa1,Ait Ayad Imane1

Affiliation:

1. Laboratory of Electrical Systems, Energy Efficiency and Telecommunications, Department of Physics, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech 40000, Morocco

Abstract

Accurate models of power electronic converters can greatly enhance the accuracy of hardware-in-the-loop (HIL) simulators. This can result in faster and more cost-effective design cycles in industrial applications. This paper presents a detailed hardware model of the IGBT and power diode at the device level suggested for emulating power electronic converters on a field programmable gate array (FPGA). The static visualization of the IGBT component involves an arrangement of equivalent models for both the MOSFET and bipolar transistor in a cascading configuration. The dynamic aspect is represented by inter-electrode nonlinear capacitances. In an effort to expedite the development process while still producing reliable results, the algorithm for the simulation system was built utilizing FPGA-based rapid prototyping via the HDL Coder in MATLAB software (R2019b). Essentially, the HDL Coder transforms the Simulink blocks of these devices within MATLAB into a hardware description language (HDL) suitable for implementation on an FPGA. To evaluate the suggested IGBT hardware model and the nonlinear circuit simulation technique, a chopper circuit is replicated, and an FPGA-in-the-loop simulation is carried out to compare the efficacy and accuracy of the model with both offline simulation results and real-time simulation results using MATLAB Simulink software and the Altera FPGA Cyclone IV GX development board.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3