Imaging Method for Measurements of Particle Density and Solid Holdup of Entangled MWCNTs in a Fluidized Bed

Author:

Lee Min Ji,Kim Sung WonORCID

Abstract

A measurement method of the apparent particle density of the carbon nanotube (CNT) particles, characterized by enveloped volume formed by loosely entangled nanotubes, has been proposed for the CNT fluidized bed application. The method is characterized by obtaining the enveloped volume from the CNTs imaging under the free falling condition similar to the fluidized bed. The shape of the falling CNT particles in a column (0.1 m long × 0.012 m wide × 0.60 m high) was photographed using a high-speed camera under the sedimentation condition, and the apparent CNT particle density was calculated from the enveloped volume obtained by image-processing for the particles images. The apparent densities and solid holdups by the imaging method at various conditions were compared with those by the previous Hg-porosimetry method for the two types of CNTs (a vertically aligned CNT and two entangle CNTs) and the nonporous polycarbonate particle (a reference particle). The imaging method reflects well the packed bed and fluidized bed phenomena observed in the experiments with reasonable solid holdups, compared with the Hg-porosimetry method showing high densities and low holdups. The sizes of CNT particles predicted with the density by the imaging method were in good agreement with the measured mean particle sizes when calculated based on the Richardson–Zaki equation, indicating the imaging method represented well the enveloped volume and shape formed by entangled nanotubes on the CNTs.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3