Unravelling the Mechanism and Governing Factors in Lewis Acid and Non-Covalent Diels–Alder Catalysis: Different Perspectives

Author:

Vermeersch Lise1ORCID,De Proft Frank1,Faulkner Vicky1,De Vleeschouwer Freija1ORCID

Affiliation:

1. Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium

Abstract

In the current literature, many non-covalent interaction (NCI) donors have been proposed that can potentially catalyze Diels-Alder (DA) reactions. In this study, a detailed analysis of the governing factors in Lewis acid and non-covalent catalysis of three types of DA reactions was carried out, for which we selected a set of hydrogen-, halogen-, chalcogen-, and pnictogen-bond donors. We found that the more stable the NCI donor–dienophile complex, the larger the reduction in DA activation energy. We also showed that for active catalysts, a significant part of the stabilization was caused by orbital interactions, though electrostatic interactions dominated. Traditionally, DA catalysis was attributed to improved orbital interactions between the diene and dienophile. Recently, Vermeeren and co-workers applied the activation strain model (ASM) of reactivity, combined with the Ziegler-Rauk-type energy decomposition analysis (EDA), to catalyzed DA reactions in which energy contributions for the uncatalyzed and catalyzed reaction were compared at a consistent geometry. They concluded that reduced Pauli repulsion energy, and not enhanced orbital interaction energy, was responsible for the catalysis. However, when the degree of asynchronicity of the reaction is altered to a large extent, as is the case for our studied hetero-DA reactions, the ASM should be employed with caution. We therefore proposed an alternative and complementary approach, in which EDA values for the catalyzed transition-state geometry, with the catalyst present or deleted, can be compared one to one, directly measuring the effect of the catalyst on the physical factors governing the DA catalysis. We discovered that enhanced orbital interactions are often the main driver for catalysis and that Pauli repulsion plays a varying role.

Funder

Research Foundation - Flanders

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3