Growth and Molecular Responses of Tomato to Prolonged and Short-Term Heat Exposure

Author:

Tokić Mirta1ORCID,Leljak Levanić Dunja1ORCID,Ludwig-Müller Jutta2ORCID,Bauer Nataša1ORCID

Affiliation:

1. Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

2. Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany

Abstract

Tomatoes are one of the most important vegetables for human consumption. In the Mediterranean’s semi-arid and arid regions, where tomatoes are grown in the field, global average surface temperatures are predicted to increase. We investigated tomato seed germination at elevated temperatures and the impact of two different heat regimes on seedlings and adult plants. Selected exposures to 37 °C and heat waves at 45 °C mirrored frequent summer conditions in areas with a continental climate. Exposure to 37 °C or 45 °C differently affected seedlings’ root development. Both heat stresses inhibited primary root length, while lateral root number was significantly suppressed only after exposure to 37 °C. Heat stress treatments induced significant accumulation of indole-3-acetic acid (IAA) and reduced abscisic acid (ABA) levels in seedlings. As opposed to the heat wave treatment, exposure to 37 °C increased the accumulation of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which may have been involved in the root architecture modification of seedlings. Generally, more drastic phenotypic changes (chlorosis and wilting of leaves and bending of stems) were found in both seedlings and adult plants after the heat wave-like treatment. This was also reflected by proline, malondialdehyde and heat shock protein HSP90 accumulation. The gene expression of heat stress-related transcription factors was perturbed and DREB1 was shown to be the most consistent heat stress marker.

Funder

Croatian Science Foundation

Deutscher Akademischer Austauschdienst

Federation of European Societies of Plant Biology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3