Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?

Author:

Szczesio-Wlodarczyk Agata1ORCID,Barszczewska-Rybarek Izabela M.2ORCID,Chrószcz-Porębska Marta W.2ORCID,Kopacz Karolina34,Sokolowski Jerzy5,Bociong Kinga5ORCID

Affiliation:

1. University Laboratory of Materials Research, Medical University of Lodz, Pomorska 251 Str., 92-213 Lodz, Poland

2. Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland

3. “DynamoLab” Academic Laboratory of Movement and Human Physical Performance, Medical University of Lodz, Pomorska 251 Str., 92-216 Lodz, Poland

4. Department of Health Sciences, Medical University of Mazovia, Ludwika Rydygiera 8 Str., 01-793 Warszawa, Poland

5. Department of General Dentistry, Medical University of Lodz, Pomorska 251 Str., 92-213 Lodz, Poland

Abstract

Due to the questionable durability of dental restorations, there is a need to increase the lifetime of composite restoration. The present study used diethylene glycol monomethacrylate/4,4′-methylenebis(cyclohexyl isocyanate) (DEGMMA/CHMDI), diethylene glycol monomethacrylate/isophorone diisocyanate (DEGMMA/IPDI) monomers, and bis(2,6-diisopropylphenyl)carbodiimide (CHINOX SA-1) as modifiers of a polymer matrix (40 wt% urethane dimethacrylate (UDMA), 40 wt% bisphenol A ethoxylateddimethacrylate (bis-EMA), and 20 wt% triethyleneglycol dimethacrylate (TEGDMA)). Flexural strength (FS), diametral tensile strength (DTS), hardness (HV), sorption, and solubility were determined. To assess hydrolytic stability, the materials were tested before and after two aging methods (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). The aging protocol resulted in no noticeable change (median values were the same as or higher than the control value) or a decrease in the DTS value from 4 to 28%, and a decrease in the FS value by 2 to 14%. The hardness values after aging were more than 60% lower than those of the controls. The used additives did not improve the initial (control) properties of the composite material. The addition of CHINOX SA-1 improved the hydrolytic stability of composites based on UDMA/bis-EMA/TEGDMA monomers, which could potentially extend the service life of the modified material. Extended studies are needed to confirm the possible use of CHINOX SA-1 as an antihydrolysis agent in dental composites.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3