Structural Characterization of Hypoxia Inducible Factor α—Prolyl Hydroxylase Domain 2 Interaction through MD Simulations

Author:

Camagni Giorgia F.1,Minervini Giovanni1ORCID,Tosatto Silvio C. E.1ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy

Abstract

The Prolyl Hydroxylases (PHDs) are an enzymatic family that regulates cell oxygen-sensing. PHDs hydroxylate hypoxia-inducible transcription factors α (HIFs-α) driving their proteasomal degradation. Hypoxia inhibits PHDs activity, inducing HIFs-α stabilization and cell adaptation to hypoxia. As a hallmark of cancer, hypoxia promotes neo-angiogenesis and cell proliferation. PHD isoforms are thought to have a variable impact on tumor progression. All isoforms hydroxylate HIF-α (HIF-1,2,3α) with different affinities. However, what determines these differences and how they pair with tumor growth is poorly understood. Here, molecular dynamics simulations were used to characterize the PHD2 binding properties in complexes with HIF-1α and HIF-2α. In parallel, conservation analysis and binding free energy calculations were performed to better understand PHD2 substrate affinity. Our data suggest a direct association between the PHD2 C-terminus and HIF-2α that is not observed in the PHD2/HIF-1α complex. Furthermore, our results indicate that phosphorylation of a PHD2 residue, Thr405, causes a variation in binding energy, despite the fact that this PTM has only a limited structural impact on PHD2/HIFs-α complexes. Collectively, our findings suggest that the PHD2 C-terminus may act as a molecular regulator of PHD’s activity.

Funder

Fondazione AIRC per la Ricerca sul Cancro

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3