Affiliation:
1. Department of Chemistry Education, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
Abstract
The development of pyrene-based fluorescent assembled systems with desirable emission characteristics by reducing conventional concentration quenching and/or aggregation-induced quenching (ACQ) is highly desirable. In this investigation, we designed a new azobenzene-functionalized pyrene derivative (AzPy) in which sterically bulky azobenzene is linked to pyrene. Absorption and fluorescence spectroscopic results before and after molecular assembly indicate that even in a dilute N,N-dimethylformamide (DMF) solution (~10 μM), AzPy molecules experienced significant concentration quenching, whereas the emission intensities of AzPy DMF-H2O turbid suspensions containing self-assembled aggregates were slightly enhanced and showed similar values regardless of the concentration. The shape and size of sheet-like structures, from incomplete flakes less than one micrometer in size to well-completed rectangular microstructures, could be adjusted by changing the concentration. Importantly, such sheet-like structures exhibit concentration dependence of their emission wavelength from blue to yellow-orange. Comparison with the precursor (PyOH) demonstrates that the introduction of a sterically twisted azobenzene moiety plays an important role in converting the spatial molecular arrangements from H- to J-type aggregation mode. Thus, AzPy chromophores grow into anisotropic microstructures through inclined J-type aggregation and high crystallinity, which are responsible for their unexpected emission characteristics. Our findings provide useful insight into the rational design of fluorescent assembled systems.
Funder
National Research Foundation (NRF) of Korea
NRF-Japan Society for the Promotion of Science
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献