A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder

Author:

Wang Zixuan1,Zhang Yongqing1ORCID,Yu Yun1,Zhang Junming1,Liu Yuhang1,Zou Quan2ORCID

Affiliation:

1. School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Recent advances in single-cell sequencing assays for the transposase-accessibility chromatin (scATAC-seq) technique have provided cell-specific chromatin accessibility landscapes of cis-regulatory elements, providing deeper insights into cellular states and dynamics. However, few research efforts have been dedicated to modeling the relationship between regulatory grammars and single-cell chromatin accessibility and incorporating different analysis scenarios of scATAC-seq data into the general framework. To this end, we propose a unified deep learning framework based on the ProdDep Transformer Encoder, dubbed PROTRAIT, for scATAC-seq data analysis. Specifically motivated by the deep language model, PROTRAIT leverages the ProdDep Transformer Encoder to capture the syntax of transcription factor (TF)-DNA binding motifs from scATAC-seq peaks for predicting single-cell chromatin accessibility and learning single-cell embedding. Based on cell embedding, PROTRAIT annotates cell types using the Louvain algorithm. Furthermore, according to the identified likely noises of raw scATAC-seq data, PROTRAIT denoises these values based on predated chromatin accessibility. In addition, PROTRAIT employs differential accessibility analysis to infer TF activity at single-cell and single-nucleotide resolution. Extensive experiments based on the Buenrostro2018 dataset validate the effeteness of PROTRAIT for chromatin accessibility prediction, cell type annotation, and scATAC-seq data denoising, therein outperforming current approaches in terms of different evaluation metrics. Besides, we confirm the consistency between the inferred TF activity and the literature review. We also demonstrate the scalability of PROTRAIT to analyze datasets containing over one million cells.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3