The Geomagnetic Field (GMF) Is Necessary for Black Garden Ant (Lasius niger L.) Foraging and Modulates Orientation Potentially through Aminergic Regulation and MagR Expression

Author:

Mannino Giuseppe1ORCID,Casacci Luca Pietro1ORCID,Bianco Dolino Giorgia1,Badolato Giuseppe1,Maffei Massimo Emilio1ORCID,Barbero Francesca1ORCID

Affiliation:

1. Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13/Via Gioacchino Quarello 15/A, 10123 Torino, Italy

Abstract

The geomagnetic field (GMF) can affect a wide range of animal behaviors in various habitats, primarily providing orientation cues for homing or migratory events. Foraging patterns, such as those implemented by Lasius niger, are excellent models to delve into the effects of GMF on orientation abilities. In this work, we assessed the role of GMF by comparing the L. niger foraging and orientation performance, brain biogenic amine (BA) contents, and the expression of genes related to the magnetosensory complex and reactive oxygen species (ROS) of workers exposed to near-null magnetic fields (NNMF, ~40 nT) and GMF (~42 µT). NNMF affected workers’ orientation by increasing the time needed to find the food source and return to the nest. Moreover, under NNMF conditions, a general drop in BAs, but not melatonin, suggested that the lower foraging performance might be correlated to a decrease in locomotory and chemical perception abilities, potentially driven by dopaminergic and serotoninergic regulations, respectively. The variation in the regulation of genes related to the magnetosensory complex in NNMF shed light on the mechanism of ant GMF perception. Overall, our work provides evidence that the GMF, along with chemical and visual cues, is necessary for the L. niger orientation process.

Funder

local research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference66 articles.

1. Sunscreen for the young earth;Jardine;Science,2010

2. Magnetotactic bacteria, magnetosomes and their application;Yan;Microbiol. Res.,2012

3. Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi;Nagy;Bioelectromagn. J.,2004

4. Maffei, M.E. (2022). Bioelectromagnetism, CRC Press.

5. Magnetoreception in eusocial insects: An update;Wajnberg;J. Roy. Soc. Interf.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3