Aptamers as Novel Binding Molecules on an Antimicrobial Peptide-Armored Composite Hydrogel Wound Dressing for Specific Removal and Efficient Eradication of Pseudomonas aeruginosa

Author:

Kraemer Markus1,Bellion Magali1,Kissmann Ann-Kathrin12,Herberger Tilmann2,Synatschke Christopher V.2ORCID,Bozdogan Anil34,Andersson Jakob4,Rodriguez Armando56ORCID,Ständker Ludger6ORCID,Wiese Sebastien6,Stenger Steffen7,Spellerberg Barbara7,Gottschalk Kay-Eberhard8,Cetinkaya Ahmet9ORCID,Pietrasik Joanna9ORCID,Weil Tanja2,Rosenau Frank12ORCID

Affiliation:

1. Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

2. Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany

3. Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, 3420 Tulln, Austria

4. Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria

5. Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany

6. Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany

7. Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany

8. Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

9. Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland

Abstract

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the “wound” surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.

Funder

Baden-Württemberg Stiftung

Horizon 2020

Deutsche Forschungsgemeinschaft

Alexander von Humboldt Foundation

Federal Ministry of Education and Research

German Academic Exchange Service

National Science Centre, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3