Inhibition of Transglutaminase 2 as a Therapeutic Strategy in Celiac Disease—In Vitro Studies in Intestinal Cells and Duodenal Biopsies

Author:

Stricker Sebastian1ORCID,de Laffolie Jan1,Zimmer Klaus-Peter1,Rudloff Silvia12

Affiliation:

1. Department of Pediatrics, Justus-Liebig-University Giessen, 35392 Giessen, Germany

2. Institute of Nutritional Science, Justus-Liebig-University Giessen, 35392 Giessen, Germany

Abstract

Enzymatic modification of gliadin peptides by human transglutaminase 2 (TG2) is a key mechanism in the pathogenesis of celiac disease (CD) and represents a potential therapeutic target. Recently, we have identified the small oxidative molecule PX-12 as an effective inhibitor of TG2 in vitro. In this study, we further investigated the effect of PX-12 and the established active-site directed inhibitor ERW1041 on TG2 activity and epithelial transport of gliadin peptides. We analyzed TG2 activity using immobilized TG2, Caco-2 cell lysates, confluent Caco-2 cell monolayers and duodenal biopsies from CD patients. TG2-mediated cross-linking of pepsin-/trypsin-digested gliadin (PTG) and 5BP (5-biotinamidopentylamine) was quantified by colorimetry, fluorometry and confocal microscopy. Cell viability was tested with a resazurin-based fluorometric assay. Epithelial transport of promofluor-conjugated gliadin peptides P31-43 and P56-88 was analyzed by fluorometry and confocal microscopy. PX-12 reduced TG2-mediated cross-linking of PTG and was significantly more effective than ERW1041 (10 µM, 15 ± 3 vs. 48 ± 8%, p < 0.001). In addition, PX-12 inhibited TG2 in cell lysates obtained from Caco-2 cells more than ERW1041 (10 µM; 12 ± 7% vs. 45 ± 19%, p < 0.05). Both substances inhibited TG2 comparably in the intestinal lamina propria of duodenal biopsies (100 µM, 25 ± 13% vs. 22 ± 11%). However, PX-12 did not inhibit TG2 in confluent Caco-2 cells, whereas ERW1041 showed a dose-dependent effect. Similarly, epithelial transport of P56-88 was inhibited by ERW1041, but not by PX-12. Cell viability was not negatively affected by either substance at concentrations up to 100 µM. PX-12 did not reduce TG2 activity or gliadin peptide transport in confluent Caco-2 cells. This could be caused by rapid inactivation or degradation of the substance in the Caco-2 cell culture. Still, our in vitro data underline the potential of the oxidative inhibition of TG2. The fact that the TG2-specific inhibitor ERW1041 reduced the epithelial uptake of P56-88 in Caco-2 cells further strengthens the therapeutic potential of TG2 inhibitors in CD.

Funder

Deutsche Forschungsgemeinschaft

University Medical Center Giessen and Marburg

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3