Genetic Background Influence on Hippocampal Synaptic Plasticity: Frequency-Dependent Variations between an Inbred and an Outbred Mice Strain

Author:

Roux Candice M.12ORCID,Lecouflet Pierre1,Billard Jean-Marie1ORCID,Esneault Elise2,Leger Marianne1,Schumann-Bard Pascale1,Freret Thomas1ORCID

Affiliation:

1. Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France

2. PORSOLT, 53940 Le Genest Saint-Isle, France

Abstract

For almost half a century, acute hippocampal slice preparations have been widely used to investigate anti-amnesic (or promnesic) properties of drug candidates on long-term potentiation (LTP)—a cellular substrate that supports some forms of learning and memory. The large variety of transgenic mice models now available makes the choice of the genetic background when designing experiments crucially important. Furthermore, different behavioral phenotypes were reported between inbred and outbred strains. Notably, some differences in memory performance were emphasized. Despite this, investigations, unfortunately, did not explore electrophysiological properties. In this study, two stimulation paradigms were used to compare LTP in the hippocampal CA1 area of both inbred (C57BL/6) and outbred (NMRI) mice. High-frequency stimulation (HFS) revealed no strain difference, whereas theta-burst stimulation (TBS) resulted in significantly reduced LTP magnitude in NMRI mice. Additionally, we demonstrated that this reduced LTP magnitude (exhibited by NMRI mice) was due to lower responsiveness to theta-frequency during conditioning stimuli. In this paper, we discuss the anatomo-functional correlates that may explain such hippocampal synaptic plasticity divergence, although straightforward evidence is still lacking. Overall, our results support the prime importance of considering the animal model related to the intended electrophysiological experiments and the scientific issues to be addressed.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3