Construction of Two Independent RAB Family-Based Scoring Systems Based on Machine Learning Algorithms and Definition of RAB13 as a Novel Therapeutic Target for Hepatocellular Carcinoma

Author:

Jiang Chenhao12,Liu Zijian3ORCID,Yuan Jingsheng12,Wu Zhenru4,Kong Lingxiang12,Yang Jiayin12ORCID,Lv Tao12

Affiliation:

1. Department of Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China

2. Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China

3. Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China

4. Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu 610041, China

Abstract

Hepatocellular carcinoma (HCC) remains a global health challenge with a low early diagnosis rate and high mortality. The Rab GTPase (RAB) family plays an essential role in the occurrence and progression of HCC. Nonetheless, a comprehensive and systematic investigation of the RAB family has yet to be performed in HCC. We comprehensively assessed the expression landscape and prognostic significance of the RAB family in HCC and systematically correlated these RAB family genes with tumor microenvironment (TME) characteristics. Then, three RAB subtypes with distinct TME characteristics were determined. Using a machine learning algorithm, we further established a RAB score to quantify TME features and immune responses of individual tumors. Moreover, to better evaluate patient prognosis, we established a RAB risk score as an independent prognostic factor for patients with HCC. The risk models were validated in independent HCC cohorts and distinct HCC subgroups, and their complementary advantages guided clinical practice. Furthermore, we further confirmed that the knockdown of RAB13, a pivotal gene in risk models, suppressed HCC cell proliferation and metastasis by inhibiting the PI3K/AKT signaling pathway, CDK1/CDK4 expression, and epithelial-mesenchymal transition. In addition, RAB13 inhibited the activation of JAK2/STAT3 signaling and the expression of IRF1/IRF4. More importantly, we confirmed that RAB13 knockdown enhanced GPX4-dependent ferroptosis vulnerability, highlighting RAB13 as a potential therapeutic target. Overall, this work revealed that the RAB family played an integral role in forming HCC heterogeneity and complexity. RAB family-based integrative analysis contributed to enhancing our understanding of the TME and guided more effective immunotherapy and prognostic evaluation.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Department Project

Sichuan Natural Science Foundation

1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3