Assessment of Laser Parameters to Improve Lid Tension—A Proof of Concept towards Lasercanthoplasty

Author:

Holtmann Christoph1,Witt Joana1ORCID,Schilcher Alexandra1,Avdakovic Amar1,Hutfilz Alessa2,Theisen-Kunde Dirk2ORCID,Wiebe-Ben Zakour Katharina1,Knop Erich3,Geerling Gerd1ORCID

Affiliation:

1. Department of Ophthalmology, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany

2. Medical Laser Center Luebeck, Peter-Monnik-Weg 4, 23562 Luebeck, Germany

3. Department of Anatomy, Health and Medical University (HMU) Potsdam, Olympischer Weg 1, 14471 Potsdam, Germany

Abstract

Background: Preliminary clinical work indicates that increasing eyelid tension improves the function of the meibomian glands. The aim of this study was to optimize laser parameters for a minimally invasive laser treatment to increase eyelid tension by coagulation of the lateral tarsal plate and canthus. Methods: Experiments were performed on a total of 24 porcine lower lids post mortem, with six lids in each group. Three groups were irradiated with an infrared B radiation laser. Laser-induced lower eyelid shortening was measured and the increase in eyelid tension was assessed with a force sensor. A histology was performed to evaluate coagulation size and laser-induced tissue damage. Results: In all three groups, a significant shortening of the eyelids after irradiation was noticed (p < 0.0001). The strongest effect was seen with 1940 nm/1 W/5 s, showing −15.1 ± 3.7% and −2.5 ± 0.6 mm lid shortening. The largest significant increase in eyelid tension was seen after placing the third coagulation. Conclusion: Laser coagulation leads to lower eyelid shortening and an increase in lower eyelid tension. The strongest effect with the least tissue damage was shown for laser parameters of 1470 nm/2.5 W/2 s. In vivo studies of this effect have to confirm the efficacy of this concept prior to clinical application.

Funder

Heinrich-Heine-University Duesseldorf

Verein zur Foerderung der Augenheilkunde in Duesseldorf e.V.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3