Preparation of a Mussel-Inspired Supramolecular Polymer Coating Containing Graphene Oxide on Magnesium Alloys with Anti-Corrosion and Self-Healing Properties

Author:

Zhang Meiling1ORCID,Yu Xiaoming1,Sheng Mengyi1,Chen Hua1,Chen Bailin1

Affiliation:

1. School of Materials Science and Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

Herein, we present a mussel-inspired supramolecular polymer coating to improve the an-ti-corrosion and self-healing properties of an AZ31B magnesium alloy. A self-assembled coating of polyethyleneimine (PEI) and polyacrylic acid (PAA) is a supramolecular aggregate that takes advantage of the weak interaction of non-covalent bonds between molecules. The cerium-based conversion layers overcome the corrosion problem between the coating and the substrate. Catechol mimics mussel proteins to form adherent polymer coatings. Chains of PEI and PAA interact electrostatically at high density, forming a dynamic binding that causes strand entanglement, enabling the rapid self-healing properties of a supramolecular polymer. The addition of graphene oxide (GO) as an anti-corrosive filler gives the supramolecular polymer coating a superior barrier and impermeability properties. The results of EIS revealed that a direct coating of PEI and PAA accelerates the corrosion of magnesium alloys; the impedance modulus of a PEI and PAA coating is only 7.4 × 103 Ω·cm2, and the corrosion current of a 72 h immersion in a 3.5 wt% NaCl solution is 1.401 × 10−6 Ω·cm2. The impedance modulus of the addition of a catechol and graphene oxide supramolecular polymer coating is up to 3.4 × 104 Ω·cm2, outperforming the substrate by a factor of two. After soaking in a 3.5 wt% NaCl solution for 72 h, the corrosion current is 0.942 × 10−6 A/cm2, which is superior to other coatings in this work. Furthermore, it was found that 10-micron scratches were completely healed in all coatings within 20 min, in the presence of water. The supramolecular polymer offers a new technique for the prevention of metal corrosion.

Funder

National Natural Science Foundation of China

Jilin Provincial Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in anti-corrosion coatings on magnesium alloys and their preparation methods;Journal of Coatings Technology and Research;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3