Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle

Author:

Fedorova Elena E.1

Affiliation:

1. Timiryazev Institute of Plant Physiology, Russian Academy of Science, 127276 Moscow, Russia

Abstract

Symbiosis between leguminous plants and soil bacteria rhizobia is a refined type of plant–microbial interaction that has a great importance to the global balance of nitrogen. The reduction of atmospheric nitrogen takes place in infected cells of a root nodule that serves as a temporary shelter for thousands of living bacteria, which, per se, is an unusual state of a eukaryotic cell. One of the most striking features of an infected cell is the drastic changes in the endomembrane system that occur after the entrance of bacteria to the host cell symplast. Mechanisms for maintaining intracellular bacterial colony represent an important part of symbiosis that have still not been sufficiently clarified. This review focuses on the changes that occur in an endomembrane system of infected cells and on the putative mechanisms of infected cell adaptation to its unusual lifestyle.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference93 articles.

1. Speak, friend and enter: Signalling systems that promote beneficial symbiotic associations in plants;Oldroyd;Nat. Publ. Gr.,2013

2. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation;Roy;Plant Cell,2020

3. Legume nodulation: The host controls the party;Ferguson;Plant Cell Environ.,2019

4. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants;Mergaert;Plant Cell,2020

5. De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis;Crespi;Sci. Signal.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3