Cationic Pullulan Derivatives Based Flocculants for Removal of Some Metal Oxides from Simulated Wastewater

Author:

Ghimici Luminita1,Nafureanu Maria Magdalena1,Constantin Marieta1ORCID

Affiliation:

1. “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania

Abstract

Modified polysaccharides have been increasingly used as flocculants in wastewater treatment due to their non-toxicity, low price, biodegradability, etc. However, the pullulan derivatives are less used in wastewater purification processes. Therefore, this article presents some data regarding FeO and TiO2 particle removal from model suspensions by some pullulan derivatives with pendant quaternary ammonium salt groups, trimethylammonium propyl carbamate chloride (TMAPx–P). The influence of the polymer ionic content, dose, and initial solution concentration as well as of the dispersion pH and composition (metal oxide content, salts, and kaolin) on the separation efficacy were considered. UV-Vis spectroscopy measurements have shown a very good removal efficacy of TMAPx–P for the FeO particles (around 95% and more), irrespective of the polymer and suspension characteristics; a lower clarification of the TiO2 particles suspension (removal efficiency between 68% and 75%) was noticed. Both the zeta potential and the particle aggregates size measurements revealed the charge patch as the main mechanism which governs the metal oxide removal process. The surface morphology analysis/EDX data provided supplementary evidence regarding the separation process. A good removal efficiency (90%) of the pullulan derivatives/FeO flocs for the Bordeaux mixture particles from simulated wastewater was found.

Funder

Ministry of Research, Innovation and Digitization

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Pullulan: Microbial sources, production and Applications;Singh;Carbohydr. Polym.,2008

2. Pullulan: Biosynthesis, production, and applications;Cheng;Appl. Microbiol. Biotechnol.,2011

3. Recent advances in polysaccharide bio-based flocculants;Salehizadeh;Biotechnol. Adv.,2018

4. Popa, V. (2011). Polysaccharides in Medicinal and Pharmaceutical Applications, Ismithers Rapra Publishing.

5. Cationization of polysaccharides:A path to greener derivatives with many industrial applications;Prado;Eur. Polym. J.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3