Regulation of De Novo Lipid Synthesis by the Small GTPase Rac1 in the Adipogenic Differentiation of Progenitor Cells from Mouse White Adipose Tissue

Author:

Hasegawa Kiko1,Takenaka Nobuyuki1,Yamamoto Maaya1,Sakoda Yoshiki1,Aiba Atsu2ORCID,Satoh Takaya1ORCID

Affiliation:

1. Laboratory of Cell Biology, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan

2. Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

White adipocytes act as lipid storage, and play an important role in energy homeostasis. The small GTPase Rac1 has been implicated in the regulation of insulin-stimulated glucose uptake in white adipocytes. Adipocyte-specific rac1-knockout (adipo-rac1-KO) mice exhibit atrophy of subcutaneous and epididymal white adipose tissue (WAT); white adipocytes in these mice are significantly smaller than controls. Here, we aimed to investigate the mechanisms underlying the aberrations in the development of Rac1-deficient white adipocytes by employing in vitro differentiation systems. Cell fractions containing adipose progenitor cells were obtained from WAT and subjected to treatments that induced differentiation into adipocytes. In concordance with observations in vivo, the generation of lipid droplets was significantly attenuated in Rac1-deficient adipocytes. Notably, the induction of various enzymes responsible for de novo synthesis of fatty acids and triacylglycerol in the late stage of adipogenic differentiation was almost completely suppressed in Rac1-deficient adipocytes. Furthermore, the expression and activation of transcription factors, such as the CCAAT/enhancer-binding protein (C/EBP) β, which is required for the induction of lipogenic enzymes, were largely inhibited in Rac1-deficient cells in both early and late stages of differentiation. Altogether, Rac1 is responsible for adipogenic differentiation, including lipogenesis, through the regulation of differentiation-related transcription.

Funder

Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan

JST SPRING

Naito Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3