Parallel Algorithm on GPU for Wireless Sensor Data Acquisition Using a Team of Unmanned Aerial Vehicles

Author:

Roberge VincentORCID,Tarbouchi Mohammed

Abstract

This paper proposes a framework for the wireless sensor data acquisition using a team of Unmanned Aerial Vehicles (UAVs). Scattered over a terrain, the sensors detect information about their surroundings and can transmit this information wirelessly over a short range. With no access to a terrestrial or satellite communication network to relay the information to, UAVs are used to visit the sensors and collect the data. The proposed framework uses an iterative k-means algorithm to group the sensors into clusters and to identify Download Points (DPs) where the UAVs hover to download the data. A Single-Source–Shortest-Path algorithm (SSSP) is used to compute optimal paths between every pair of DPs with a constraint to reduce the number of turns. A genetic algorithm supplemented with a 2-opt local search heuristic is used to solve the multi-travelling salesperson problem and to find optimized tours for each UAVs. Finally, a collision avoidance strategy is implemented to guarantee collision-free trajectories. Concerned with the overall runtime of the framework, the SSSP algorithm is implemented in parallel on a graphics processing unit. The proposed framework is tested in simulation using three UAVs and realistic 3D maps with up to 100 sensors and runs in just 20.7 s, a 33.3× speed-up compared to a sequential execution on CPU. The results show that the proposed method is efficient at calculating optimized trajectories for the UAVs for data acquisition from wireless sensors. The results also show the significant advantage of the parallel implementation on GPU.

Funder

Canadian Defense Academy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3